Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Song Yang, Shu-Ping Zhang, Ying-Ying Wu and Si-Chang Shao*

Department of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's
Republic of China

Correspondence e-mail: shaosic@fync.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
R factor $=0.144$
$w R$ factor $=0.278$
Data-to-parameter ratio $=13.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Methoxybenzaldehyde isonicotinoylhydrazone

The title molecule, $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$, adopts a trans configuration with respect to the $\mathrm{C}=\mathrm{N}$ double bond. There are two molecules in the asymmetric unit. The dihedral angles between the two rings are 39.1 (4) and 19.7 (4) ${ }^{\circ}$. In the crystal structure, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds generate a network structure.

Comment

The background to this study is described in the previous paper (Xie et al., 2006). As an extension of work on the structural characterization of hydrazone Schiff base compounds, we report here the crystal structure of (I), a new isonicotinohydrazone with 2-methoxybenzaldehyde.

(I)

In the title compound, (I), which crystallizes with two unique molecules in the asymmetric unit (Fig. 1), the $\mathrm{C}-\mathrm{N}$ bonds in the hydrazone units are characteristically short (Table 1) because of conjugation effects. All other bond lengths are within normal ranges (Allen et al., 1987). The dihedral angles between the benzene and pyridine rings are 39.1 (4) ${ }^{\circ}$ (C1/C2/C3/N1/C4/C5 with C8/C9/C10/C11/C12/C13) and 19.7 (4) ${ }^{\circ}$ (C15/C16/C17/N4/C18/C19 with C22/C23/C24/ C25/C26/C27); these are slightly larger than normal (Fun et al., 1997) due to the steric effect of the C13 and C27 methoxy substituents. The crystal structure is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2 and Fig. 2)

Experimental

2-Methoxybenzaldehyde ($0.2 \mathrm{mmol}, 27.2 \mathrm{mg}$) and isonicotinohydrazide ($0.2 \mathrm{mmol}, 27.4 \mathrm{mg}$) were dissolved in methanol (10 ml). The mixture was stirred at room temperature for about 10 min . to give a clear yellow solution. The solution was set aside for 8 d to allow slow evaporation of the solvent. Large colourless plate-shaped crystals separated from the solution; these were collected and washed three times with water.

Received 17 November 2005 Accepted 28 November 2005 Online 7 December 2005
\qquad

Figure 1
The structure of the asymmetric unit of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
The crystal packing of (I), viewed along the a axis. Dashed lines indicate intermolecular hydrogen bonds.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \\
& M_{r}=255.27 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=9.766(2) \AA \\
& b=15.935(4) \AA \\
& c=17.428(4) \AA \\
& \beta=95.404(4)^{\circ} \\
& V=2700.1(10) \AA^{3} \\
& Z=8
\end{aligned}
$$

$D_{x}=1.256 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1047 reflections
$\theta=4.9-35.8^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Plate, colourless
$0.40 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART APEX areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.966, T_{\text {max }}=0.991$
13018 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.144$
$w R\left(F^{2}\right)=0.278$
$S=1.24$
4742 reflections
345 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

O1-C6	$1.221(6)$	N5-C20	$1.327(7)$
O3-C20	$1.216(6)$	N5-N6	$1.364(6)$
N2-C6	$1.340(8)$	N6-C21	$1.269(7)$
N2-N3	$1.366(7)$		
			$115.1(5)$
C6-N2-N3	$120.8(5)$	C21-N6-N5	$124.1(7)$
C7-N3-N2	$113.8(5)$	O1-C6-N2	$122.9(6)$
C20-N5-N6	$119.6(5)$	O3-C20-N5	
			$-0.3(10)$
C6-N2-N3-C7	$-178.0(6)$	C7-C8-C13-O2	$-1.0(10)$
C20-N5-N6-C21	$-178.3(6)$	C21-C22-C27-O4	

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H2A $\cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.09	$2.825(6)$	143
N2-H2A $\cdots \mathrm{N}^{\mathrm{i}}$	0.86	2.55	$3.294(7)$	146
N5-H5A $\cdots \mathrm{O} 1$	0.86	2.07	$2.800(6)$	142

Symmetry code: (i) $-x+2, y-\frac{1}{2},-z+\frac{1}{2}$.
All H atoms were placed in geometrically idealized positions [C$\mathrm{H}=0.93$ (aromatic H atoms) or $0.96 \AA$ (methyl H atoms); $\mathrm{N}-\mathrm{H}$ $0.86 \AA$], and refined as riding atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (aromatic $\mathrm{C}, \mathrm{N})$ or $1.5 U_{\text {eq }}$ (methyl C).

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXL97.

The authors thank the Education Office of Anhui Province, China, for research grant No. 2005kj137, and Fuyang Normal College for research grant No. 2005LZ01.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2000). SHELXTL. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.

organic papers

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Winconsin.
Fun, H. K., Lu, Z. L., Duan, C. Y., Tian, Y. P., You, X. Z., Guo, Y. M., Gong, X. Y. (1997). Acta Cryst. C53, 1452-1454.

Sheldrick G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xie, Y.-H., Sheng, L.-Q., Zhu, W. \& Shao, S.-C. (2006). Acta Cryst. E62, o26o27.

